ON THE ADAMS E2-TERM FOR ELLIPTIC COHOMOLOGY 15

References

[1] A. Baker, Elliptic cohomology, p-adic modular forms and Atkin's operator Up, Contemp.

Math. 96 (1989), 33-38.

[2]

A. Baker, Heeke operators as operations in elliptic cohomology, J. Pure and Applied Alg. 63

(1990), 1-ll.

[3] A. Baker, On the homotopy type of the spectrum representing elliptic cohomology, Proc.

Amer. Math. Soc. 107 (1989), 537-48.

[4] A. Baker, Operations and cooperations in elliptic cohomology, Part I: Generalized modular

forms and the cooperation algebra, New York J. Math.

1

(1995), 39-74.

[5] A. Baker, Heeke operations and the Adams E2-term based on elliptic cohomology, Can. Math.

Bulletin 42 (1999), 129-138.

[6] A. Baker & U. Wiirgler, Liftings of formal group laws and the Artinian completion of v;;

1

BP,

Proc. Camb. Phil. Soc. 106 (1989), 5ll-30.

[7] F. Clarke

& K.

Johnson, Cooperations in elliptic homology, in 'Adams Memorial Symposium

on Algebraic Topology, Vol. 2', Ed. N. Ray

&

G. Walker, London Mathematical Society

Lecture Note Series 175 (1992), 131-43.

[8] F. Q. Gouvea, Arithmetic of p-adic modular forms, Lecture Notes in Mathematics 1304

(1988).

[9] M. J. Hopkins, Hopf-algebroids and a new proof of the Morava-Miller-Ravenel change of

rings theorem, preprint.

[10] M. Hovey

&

H. Sadofsky, Invertible spectra in the E(n)-local stable homotopy category, to

appear in Jour. Lond. Math. Soc ..

[ll] N. M. Katz, Higher congruences between modular forms, Annals of Math. 101 (1975), 332-67.

[12] S. Lang, Introduction to modular forms, Springer-Verlag, Berlin, 1995.

[13] G. Laures, The topological q-expansion principle, Topology 38 (1999), 387-425.

[14] H. R. Miller & D. C. Ravenel, Morava stabilizer algebras and localization of Novikov's E2-

term, Duke Math. J. 44 (1977), 433-47.

[15] H. R. Miller, D. C. Ravenel & W. S. Wilson, Periodic phenomena in the Adams-Novikov

spectral sequence, Annals of Math. 106 (1977), 469-516.

[16] D. C. Ravenel, Complex Cobordism and the Stable Homotopy Groups of Spheres, Academic

Press, 1986.

[17] J-P. Serre, Local Fields, Springer-Verlag, 1979.

[18] J-P. Serre, Congruences etformes modulaires (apres H. P. F. Swinnerton-Dyer), Sem. Bour-

baki 24e Annee,

{1971/2)

No.

416,

Lecture Notes in Mathematics 317 (1973), 319-38.

[19] J-P. Serre, Formes modulaires et fonctions zeta p-adiques, Lecture Notes in Mathematics

350 (1973), 191-268.

[20] N. Yagita, The exact functor theorem for BP./ In, Proc. Jap. Acad. 52 (1976), 1-3.

UNIVERSITY OF GLASGOW, GLASGOW G12

~QW,

SCOTLAND.

E-mail address:

a. bakeriDmaths. gla. ac. uk

URL:

http:/ /www.maths.gla.ac.

uk/~ajb